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Investigation of transition radiation from a regular-roughness interface
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Transition radiation at the interface between two media having regular inhomogeneities is considered in the
framework of perturbation theory, assuming that the dielectric constants of the two media differ insignificantly
from each other. The advantage of this approach is that no limitations exist on the characteristic size of the
inhomogeneities. The general case of a surface with two-dimensional roughness is considered. Attention is paid
to radiation characteristics that are general for periodic structures, independently of their particular features.
The physical picture of the radiation from a rough interface is determined by both longitudinal and transverse
effects. The case of normal incidence of an electron on a planar interface having either single or multiple
rectangular lugsdiffraction grating is analyzed in detail. For the single lug infinite in one dimension, simple
expressions for transition radiation intensity are obtained, for both relativistic and nonrelativistic electrons.
They demonstrate that corrections to the plane-surface intensity become significant at small radiation angles. In
this case the radiation is also completely unpolarized, i.e., the spectral energy density of the perpendicular
component has the same order of magnitude as that of the parallel component. Consideration of these issues is
important since rough surfaces, as compared to planar surfaces, give a number of additional results that may be
used for the analysis of surface irregularities.
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[. INTRODUCTION To clarify the physical meaning of the stated problem we
note that in transition radiation at an ideally planar interface
The well known paper of Ginzburg and Frai{ devoted the momentum transferred to the interface is always directed
to transition radiation is limited to the consideration of anperpendicularly to it during the emission process. If the in-
ideally planar interface between two media. In the presenterface is the planex(y) and the particle moves along tke
paper we consider radiation arising when a charged particlaxis at the velocity, the momentuny!l is transferred to the
passes through a planar interface on which various inhomdnterface along the direction of motion only. The momentum
geneities are present. transferred to the interface can easily be obtained from the
It is known that a charged particle is not affected by me-laws of conservation of energy,
dium inhomogeneities in longitudinal directions if the coher-
ence length exceeds the mean distance between the atoms of AE=to, @
the medium_(_)r individual inho_mogeneitie(see, e.g.[Z])._ and longitudinally transferred momentum.
Inhomogeneities on a plane interface may be of various
types, such as separate inhomogeneities isolated from each
other, periodically located inhomogeneities, or statistical
ones. These problems have been treated theoretically in

[3,4]. The first experiments on transition radiation already,\here AE and Ap are the differences in the energy and

mclude? |hnf0(mat|fon concerr]nlng Ith‘? m_fluen(;e hOf the tréat s mentum of the emitting particle before and after emission
ment of the interface on the polarization of the transitionye™ o photon with energyfie and wave vectork

radiation (see, e.g.[5]). Later, further experimental work _ . . . S
appeared devoted to this probld6i, Us(iﬁéct)h\/es—(r)gla(t?or?emg the unit vector in thé& direction.
In addition to the inhomogeneities indicated above, bent

interfaces are also possible as well as ideally planar inter- AE=v-Ap, 3

faces having an intermediate layer. If, however, the typical

parameters determining the interface curvature are smalle obtain, for small changes of the energy and momentum,

compared to the corresponding typical distances playing a

role in the formation of the radiation, corrections to formulas @ . Joo

for an ideal interface are not essenf{ialg|. Transition radia- a= v (1=BVeoC0S), (4)

tion on an ideally planar interface having an intermediate

layer (indistinct boundary, considered for a number of spe- where @ is the angle between the directions of the emitted

cial caseq9,10], differs only slightly from the case of an photon and particle velocity, an8=uv/c, wherec is the

ideally distinct interface, if the longitudinal coherence lengthvelocity of light.

exceeds the size of the intermediate layer. In the presence of inhomogeneities on a planar interface a
typical lengthl appears that characterizes the medium inho-
mogeneity in the X,y) plane. In this case the medium can

*Email address: raffi@ipr.sci.am take a momentum of the order ef#/l in the transverse

7_k) =q", (2)

1063-651X/2001/642)/02661@10)/$20.00 64 026610-1 ©2001 The American Physical Society



R. A. BAGHIYAN PHYSICAL REVIEW E 64 026610

stants of the two media differ from each other insignificantly.
A more rigorous criterion for the applicability of this ap-
proach is given below. Thus, the calculation of transition
radiation performed below with the use of perturbation
theory is applicable to only a limited set of interfaces be-
tween two media with slightly different refractive indices.
Such interfaces may be, for example, those between solid
particles and the corresponding liquids these particles are
immersed in. Although the output of transition radiation is
& & proportional to the square of the difference in refractive in-
dices of the two media and hence is strongly suppressed in
the case of slightly differing indices, the calculation tech-
nique employed will allow one to look into the physical pic-
ture of the phenomenon and to obtain general formulas valid

direction also. Thus, if we represent the field of the |oarticlefor any Qf mten_‘aces |_nd|cated ab_o Ve Many of the_quahtatlve
onclusions will obviously remain valid also for interfaces

as exp,am’jed, in pseudophotons, whose mom‘?ma we den%gtween two media with sharply changing optical properties.
by k(ky ,ky ,k;=w/v) the momentum conservation law may

b it Moreover, for an approximate quantitative evaluation of the
€ rewritten as radiation in the case of abruptly changing properties of the

FIG. 1. Section of two-dimensional rough surface in thez)
plane.

K —k =q|| (5) media, one may make use of an interpolation formula based
z 7 ’ on replacing in the final expressions the factor corresponding
1 to the emission from a planar boundary calculated perturba-

ki—k ~—. (6) tively by the exact formula for transition radiation from the

! planar interface.

The radiation energy at large distancRg in the fre-

The relation(5) is equivalent to Eq(4) sincek,=w/v, . ) .
and the relatiori6) should lead to a change of the Ginzburg- quency rangelw an.d Into the.sohd ang_le interval) for an
arbitrarily shaped interface is determined by the usual ex-

Frank formulas in just the same manner as, in light scatter- . . ; .
ing, a relation similar to Eq(6), in which the pseudophoton pression of classical electrodynamics with allowance for the
is replaced by the scattered photon, leads to deviations fror%'meCtrIC constant of the medium:
the Fresnel laws of reflection and refraction. The extent to
which this change is significant depends on specific calcula-
tions. . . .
As the exact solution of the problem seems to be ver;)NheregO:(81+82)/2 is the mean value of the dielectric
. , o
complex, we will use perturbation theory to reveal the physi-constant of the two media. We denote By the radiation

dl(w,k)=ceo|EL|?R2dQ dw, 7

cal picture. field strength at the frequenay at large distances from the
interface, it is determined from the macroscopic Maxwell’s
Il. STARTING EXPRESSION FOR THE INTENSITY equationg 2],
OF TRANSITION RADIATION FROM AN ARBITRARILY Ro )
SHAPED INTERFACE E‘;:_477R Kk k'f Ew(r)e—ikws,(r)d\/rH, ®)
0 — 0

Let us consider radiation arising when a charged particle
traverses the interface between two media. Let the interfac\(,?,hereE
be given py_a functlorz:f(x_,y). This function describes formly moving particle at the point(x,y,Z) in the medium
small deviations of the real interface from the plane0 with mean dielectric constant, [2]
that would have been the interface between the two media in '
the case of ideal surfaces. These deviations are caused by

»(r) is the Fourier component of the field of a uni-

surface rough i i le (= wvic®—Kleg
ghness. Let us choose xtrexis of the Cartesian E (r)= J
coordinate system in the plane containing the particle veloc- ¢ 2720 ,) —=k?—(w?/c?)eq
ity v and thez axis. The velocity is directed from the first o
medium into the second and makes an anglaith the z x etk tikyyrikaz gl dky (9)
axis (Fig. 2).

For calculating the radiation we will use light scattering with e being the electron charge. The quantity(r) is the
theory(see, e.g.[11]) replacing the electromagnetic wave in deviation of the dielectric constant from, e.g., in our case
it by the field of the moving particle, which we expand in a

Fourier integral with respect to time, following the standard g1~ &5

procedure. In such a way the emission problem is reduced to g1 80T 5 —oo<z<f(xy)

that of the scattering of a set of monochromatic waves con- e'(r)= (10)
o . . . so—g

stituting the field of the moving particlésee[2] for more 6y 80— 2 1, f(x,y)<z< +oo.

detai). It should then be assumed that the dielectric con-
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As the mean value of'(r) is equal to zero, the mean value
of the scattered field vanishes as well. By integrating expres-

A
X
sion (8) overz and using Eq(10) we obtain
ikRg Q
a

E;:e(82_81)

87,6, Ro v
‘ J“‘ wvic?—K'leq

gialiexy) h
—=ql[k'2— (w?/c?)e(]

Xk

xexpli(ky—kox-+i(ky—ky)yrdk, dk; dx dy| |, FIG. 2. Rectangular-lug-shaped inhomogeneity.

(1) 11l. RADIATION FROM AN IDEAL INTERFACE HAVING
AN ISOLATED RECTANGULAR-LUG-SHAPED
where INHOMOGENEITY
o=k -v=Kuw,+kv,, (12) As an example yielding to analytical solution let us con-

sider emission of a charged particle on an interface given by
the following expressioriFig. 2):

a b
In what follows letv, =0, v,=v . Whenz=f(x,y) =0, i.e., o bexal=g0 y=yel=;
in the case of a planar interface, in the approximation of z=f(xy)= a (16)
perturbation theory, we can perform the integration over the 0, [X=xo[>5, [y=Yol>3.
remaining variables and obtain a formula for the transition
radiation in the cases of one and two interfa@@sCompari- . . .
son with the exact formulas for the transition radiation al-"n€ré &o.Yo) is the distance between the trajectory of the
lows us to find the condition of applicability of the perturba- Particle moving along the axis and the center of the inho-

tion theory method. It is easy to show that in addition to theM0geneity located in the plare=0; his the height whilea
condition y y andb are the widths of the roughness along ¥endy axes,

respectively.

P Simple integration of formul&ll) with regard to Eq(16)

m <1 (13 leads to the following expression for the transition radiation
g2m 81 field at large distance®, with a particle moving along the
a stricter condition should be satisfied, that is, axis:
_ ikRg
Er—E&q N 1 _ =pl e(82 81) e ih/l
< Ew_Ew + (e coh— 1)
eoteq |C0hCOS0' (14) 2m3veg con Ro
where 27\ is the wavelength of the emitted photon, ahis o [ 1l wv/c?—k'/gg
the angle of the emission measured from thaxis; 0< 6 o "K'2— (@2/c?) 4

<. The coherence length
><sin(Akxa/Z) sin(Akyb/2)
e

iAkXX0+iAkyyo dk)l( dk}// ,

1 NBVeg Ak, Ak,
coh:W = (15
g 1-pB\eqcoso 17)

is defined here as the inverse of the momentum transferreghere
longitudinally to the interface in the emission of a photon in

the directiond [Eqg. (4)]; this corresponds, in classical con- Ak.=k' —k (18)
siderations, to that length of the trajectory of the emitting o e
particle that plays a role in the formation of transition radia-

tion (see, e.g.[2]). Aky=k;—ky

For nonrelativistic particle$.,n~\B1eo and the condi-
tion (14) for 8+ w/2 is actually always weaker thaid3), is the momentum transferred to the interface in the transverse
while for relativistic particles the conditiofl4) can be no- direction. In Eq(17) we singled out the field of the transition
ticeably stronger thafil3). radiation from the plane interfade”', i.e., forh=0,
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e(ex—e1) e'kRo

L £, ' AX
Eg——ZWCSO Bsiné Re 7//
y 1— B2ey— BreyCcOSO 19 %
(1— B2 co26)(1— Br\egcosh) s

The polarization of the radiation is determined by the

NN

double vector product under the integral sign in formula v W
(17). If the particle moves along theaxis, two polarizations —> 7 = >
are possible in our case in contrast to that of the planar in- h /

€1 —> €

N

terface. In addition to parallel polarizatiof{ X with the elec-
tric vector lying in the radiation plané&ontaining the wave
vector of the emitted quanturk, and the normal to the plane
z=0), a perpendicular polarizationL( appears with the

electric vector perpendicular to the radiation plane. This fol- ) . . L
lows from the relation So, in the process of transition radiation the particle is

affected by an inhomogeneity only at momentum transfers
' smaller than or of the order df/a and#%/b. At a=0 and
wv k k ) Lk,
k, =n— (kxkx+kyky)k—
€p p

FIG. 3. Section of strip in thex(z) plane.

k

— b=0 the inhomogeneity disappears and the effect of surface
inhomogeneity vanishes.

© In just the same manner the particle does not experience

— kp;(l—ﬂzso)l inhomogeneities when

c® &0

k2 h<|coh (22)
£ (kg =k, (20 _ _

p=0 for arbitrary values ofa andb. The last fact is well known

K2= K2+ K2 and related to the concept of the coherence length along the
poX Y direction of the particle’s motiof2].
wheren,;,n, are unit vectors in the radiation plane and in the The analysis of formulg17) will be performed in the
plane perpendicular to that, respectively. It is seen from Egfimit b—<, i.e., when the rectangular lug becomes a strip-
(20) that if ki, =k, k! =k, we have E)E=0 shaped inhomogeneityFig. 3. In this case it is possible to
X 'y ) . . .
Expression(17) shows that the particle does not experi- INtégrate expressiofi7) completely. .

ence the inhomogeneity of the interface at transversely trans- FOf  Spectral - densities of the radiation enerdy

ferred momenta large compared to the inhomogeneity “mo-—d!(®,k)/(dQ2 dw), in the case of a rectangular strip-
mentum” #/a or #/b, if the conditions shaped lug lf— =), in the absence of Cherenkov-Vavilov

radiation (8\e,=<1) we obtain the following expressions
for, respectively, parallel and perpendicular polarizations:

a >1, i.e., a>peff, b>Peff1

(21)

Ak,
2

L 2y
e

h
=1l 1+ (v v,5)sinT— +[2(sgna—sgnd)
are satisfied, since the effectig and k; are determined coh

from the denominator of the integrandk'Z+k’; +2(1—sgna sgnd) (1+ w,+ )

<(w?lv?)I(1— B2so)=pqs;. In this case the rapidly oscil-

lating factors may be replaced bys functions + (Ko SN = 15 SGNS) (2+ o SYNX = 15 SYNI)

6(Aky) 5(Aky), resulting in the law of conservation of trans-

versely transferred momentum in the emission prockss: +(va_v§)2]5in22| Ak (23
co

=k, ky=ky . By integrating expressiofL7) overk; k; we
arrive at the formula(19) with an additional phase shift

exp(ih/l o). This corresponds to the laws of conservation of I- =1} A[e2ellp g 2000

the transverse components of momenta in the reflection and

refraction of light at a planar boundary. Both of these con- —2e~ lal+[aD/p cogq ak,)]sir? )
servation laws result from the fact that in the case of a per- 2lcon

fectly planar boundary the surface cannot accept any mo-

mentum along the interface. However, if inhomogeneities arédere I‘g, is the spectral density of radiation energy deter-
present on the interface between two media, the conservatianined by expressiong7) and (19); a=xy,—al2, =X,
laws k, =k, k)’,=ky may be violated. This will lead to a +a/2 are the distances of the particle trajectory from the
difference of the formulas for transition radiation on a roughboundaries of the inhomogeneity;is the azimuthal angle of

interface from those on a planar one. the emitted photon measured from thexis, O< ¢<2;
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tha, 5= F sin(| e, 8lky) — cog| a, 8]k, Je~1*2"e;

V4 5=[F cog|a, 8lk,) +sin(| a, ]k,) Je~ |« /;

p

F=
NBVeo

(1— B2e0)(cOSO+ Beg SirPH)cose
(1— B2eo— B\egcosh)sing
(24)

p? (1— B%gycog0)? sirfe

A= ;
N2B%eq (1— B2ey— Br\eg COSH)? SiMPO

_ NBVeo _
J1—B2eo(1—sirfosirte)

sin@ cose
R

p

Consider some special cases of expressi@3s. For h
<l.on and arbitrarya additions to the transition radiation
from a planar interface are proportionalhdl .., in the case
of parallel polarization, and toh{l.,)? in the case of per-
pendicular polarization; foh—0 we havel |1}, 1+ —0.

Expressiong23) pass to the formulas for a planar inter-
face ata=0 or ata—x, i.e., in the absence of inhomoge-

neities. The intensity of the radiation depends on the relative

signs ofa and 8. When the particle moves outside the inho-

mogeneity, sgx and sgns are the same, while when mov-

ing inside sgrw and sgns are different.
When the conditions

|8[>p,

la|>p, (25

are simultaneously satisfied, formulé23) and (24) show

that the corrections to radiation at a planar interface are ex-

ponentially small. This result may be explained by the “lim-

ited nature” of the transverse sizes of the field of the moving

particle. If we expand the electric field of a rapidly moving

PHYSICAL REVIEW E64 026610

are satisfied, i.e., when the transverse field of the particle is
actually uniform on the whole strip, the corrections to radia-
tion at a planar boundary may readily be obtained from the
formula (23) above after expanding in the parameter§ p
and|é|/p.

Owing to the fact that the relation

B\eosinf cose
<1

< 28
V1— B2eo(1—sirflsirte) (8

is almost always valid, from the inequalit2?) it follows
that

|a, 4]
A

sinf cosp<1. (29

Making use of Eq.(29), under conditiong27), we obtain
from Eq. (23

|4

|| -
|||:||p|[:|__aT
><<F— Beqsinb cose
V1—B%eo(1—sirfésirte)

)sin
—2§(1+F B\/S—OSiHGCOS(p
V1—B2eo(1—sirfdsirte)
a

p
)2
T 1= fag(1_sitosiPe)

h

Icoh

h
sir?
2|COh

(30

|l =[]

=1l A
I s

2 h

2|coh

B?eq Sirfd coS e _
si

particle in a Fourier integral with respect to time, the spectrafince the corrections should vanish far0, destructive
density of the particle’s field will turn out to range up to the interference takes place from different edges of the strip. For
frequencyw only for impact parameter&distance from the nonrelativistic particles £eo<1, p~pest~lcon™NBVeo)
point at which the particle’s field is being considered to thethe expressions fdF andA have the forms

trajectory in the direction perpendicular to the particle’s mo-

' Sir?
tion) shorter tharpess, F~cotfcosp, A~ —- ¢ (31)
Sirf e
ps<p IL\/S—O (26)  For relativistic particles 8yso~1, 6<1) we have
eff \/1_73280 p €0 )

: . . V1—B%gqcoSe
At larger impact parameters the particle’s field spectrum does F~ - ,

i - ; 01+ 62 sirfo/(1— B%ey)
not contain photons at frequencies exceedingsee, e.g., ¢ 0
[2]). In the case under study the distances from the particle’s 5 ) 5 ,
trajectory to both edges of the rectangular strip considerably A (1= Beo)[1+ 6%/(1- B%e0)]*sinte
exceed the lateral sizes of the field, singe€ pess. Due to - 071+ 62 sirfol (1— B2e,)] '
this fact the corrections to the transition radiation at a per- (32)

fectly planar boundary are exponentially small.

In the other limiting case where conditions opposite toln both cases maximal deviations from the formulas of
those in Eq.(25), plane-interface transition radiation are observed for small
angles of radiations<1 if B\eo,<1 and 6<\1— B¢, if
Beo~1.
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Significant changes in the formulas for transition radiation A
at a planar boundary will be observed if one of the conditions

(27) is satisfied, while instead of the other one the opposite - 7/

condition holds:

al<p, [d[>p, (33

i.e., if the particle is affected by only the nearest edgén
this case interference of radiation from the different edges of

M—_’

the strip does not occur and one may expect significant ef- i > 7 ~
fects. For spectral densities of the radiation energy we obtain 0
|al & &
=1l 1+ Fcos(TsinHCOSgo h %
a h
+sin %sinacow) sinl— M
coh
5 Mlal . FIG. 4. Section of two-dimensional grating in the,#) plane.
+|1+F*+2[F sin Tsmaco&p
o H where | .,p~\/2 for backward emission ant.,, ~M\/(1
al . ; — B2¢,) for forward emission. Fop<1— %, we obtain
—cog —sinfcose | |[sif=—1, 34 Be0) : 0
S( A fcose ) 2Ic0h] (34 from EQgs.(32)
1l in? h COS¢op
E=lpAsin 5 —. Fm~—— =V1- %o, (37)
For nonrelativistic particles formulg84) simplify to )
sir? (0]
o A~ (1= B%).
1=l 1+ cote cose sin—
P Icoh
h Hence, in the relativistic case also there is, feor
+(cofd cop—1)sirt =—|, (35)  <\1—pB’so, a considerable deviation of the intensity from
2l con that in the plane-interface case. But at anglds- 8%e,< 6
<1 these deviations are significantly smaller.
I sirfe It follows from the analysis performed that the corrections

It=] Sir?

Pl SiRe 20 on” are significant at small angles of emission where total depo-
larization occurs. The maximal effect is achieved when the

. . L sizes of the inhomogeneity in th&,{/) plane are of the order
In this case the spectral densities of the radiation energy for ! ; .
: o of or larger than the transverse sizes of the field of a particle
parallel and perpendicular polarizations #@&1 become of

the same order, i.e., total depolarization of radiation takeéhat moves near one of the inhomogenégiep edges.
place. The absolute values of the intensities in both polariza-

tions for #<1 can exceed the intensity from the plane inter- IV. TRANSITION RADIATION

face. After integration over the angles of emission of a pho- FROM DIFFRACTION GRATING

i itV 1+ 1+
ton 6,¢, the overall intensity '+ 1~ becomes equal to the Let us consider an interface in the form of a set of peri-

radiation intensity from the planar interface. Hence, the pre:s—dically placed lugs having widtha and b and separated
ence of a strip-shaped inhomogeneity results in an anguleﬁom each other by distancekandg along thex andy axes
redistribution of the intensity of plane-interface transition ra- ’

diation and in its depolarization. respectively(difiraction grating, Fig. %

For relativistic particles, under the conditiq28), we
have

o

a
i x=xal<3, ly=vdl=3
z=f(x,y)= (38)

h
=1l 1+ Fsin— + (F2—1)sir?

a b
Icoh 2|coh , (36) 0; |X_Xm|>_a |y_ys|>_r
2 2
L= ”|A Sir? h , wherex,, andyg are the distances from the particle trajectory
P 2l con to the center of the inhomogeneity with indicesands,
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Xm=Xot M, Ys=Yo+sl, (39
m,s=0,+1,=2,....

with I,=a+d, |,=b+g being the periods along theandy
axes, respectively. Substituting E(8) into Eqg. (11) and
taking into account that

* Xm+al2 yst+b/2
= E ...dx .
m,s=— Jx,—al2 ys—b/2

.dy

-dy, (40

we obtain for the radiation field in the case of a finite grating

(—N=m, s<N) with (2N+1)? lugs the following expres-
sion:

S (2N+1) Ak /2]
Sin(Ak,1,/2)

E = Ef;'+f Ik K))

Sin{ (2N+1)Ak,1,/2]

sinAk,i2) Kk,
o (g2 Eg) o ih/l
J(kxaky)_ 773 coh RO (e h 1)

{ wvic®—k'leq ]

"k'2—(w?cd)eq

o sin(Akya/2) sin(Akyb/2)

el Akootiakyyg
Ak, Ak '

y
(41)

The structure of the expressigal) yields to an obvious
interpretation. FoN=0 we obtain expressiofiL7) for the
case of a single two-dimensional lug. A= 0 expression
(41) differs from the single-lug case iy -containing factors.

For N sufficiently large/N>1, the rapidly oscillating fac-
tor may be replaced by a sum éffunctions according to the
formula

PHYSICAL REVIEW E64 026610

sin 2N x
sinx

lim

N—oo

= _Z S(x—nm), (42)

wheren are integers and zero. The substitutid2) may be
performed in cases where the remaining part of the integrand
J(ky ,ky) does not vary significantly over the width of
the maxima of the function sil\&/sinx. By integrating we
obtain

e(82_81) . eikRO
E;:Ezl_—l (e'h”coh—l)
87veq con Ro
wv Kk’
oo k ky 2 -
c €0

X (&l @m0 +ai2) _ gl (2mm/l,) (xo=a/2)) (i (2S/1y) (Yo + bi2)

— @i/l (yo=b/2)) (43
where
2
X
) 2
ky= ky+ I—S,

y

determines the law of conservation of momentum transferred
to the grating in the direction perpendicular to the direction
of motion.

Since in a real experiment we deal always with a beam
of charged particles, it pays to write down expressions
for radiation intensities averaged over the impact para-
meters —|,/2<xo=<1,/2, —l,/2<y,=<I,/2. For the spectral
densities of the radiation energy averaged in this manner we
obtain

ab -
_ E BZm 1—
M mé=—ow

Xy

r 2
1_B280C0t0 zpeffﬂ'm Ccos¢ + Zpeffwssin(p)
1- B2y~ Begcosd | Ix ly ’

m,s=—oo

where

h ) ﬁ , (1= B2%0)[(2pesi/ly) S COSE—(2pesi/l ) TMSiN@]?
me (1— B2eo— Begcosh)? sir

: (45
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_1-B%ggcos 6 sin(mmally) sin(wshily)

(E.) =E" E B ZI

Brns= 1- B2, mm s
2petf) 2 Begsingcose 1, |° V1= Beo(1-sirdsine)sing
X 1+(|_) Tm+ > 2 X — — . , (47)
x V1-B%y  2pert (1-Bso— Bsq cOSO)sinG
+ 2pe“)2( s+ Bizosintsing |, )2 - 2 26)(eM'con
ly V1-pB%q  2pefs = (1= p"egco 0).(e : 1)
1— B%eo(1—sir?gsirte)

If the relative variation per stepn{—m+1, s—s+1)
of the functions to be summed is small, which is the case o« gitemmiyxo STMal)
under the condition @q/ly,1y<1, we can replace the € m
sum by an integral making use of Eg#4). In this case
the field of a particle covers no more than one lug, and 2p\?
we should naturally arrive at formulas for the intensity of x| 1+ I_)
radiation on a planar boundary with a single lug. In fact, if X
we use formula7) for the fields(17), then, after averaging . 21
over a beam having sizég and|, along the corresponding | 7m B\egsind cose I
directions, we obtain Eq$45) where instead of sums there V1—B%eo(1—sirt6sirte) 2p
are integrals ovek;,k; with integration limits from —c
to +oo. If on changing each of the integens by unity the sum

If, however, the particle’s field covers many lugs on theyaries by a negligibly small value, we can considar
diffraction grating (des/lx,1y>1) we obtain as a continuous variable and hence replace the sum by an

integral with use of the relatio@4). This can be done in the
limiting case of smalp, 2p/1,<1 (the particle’s field covers

Ml 1_4ab ab SiP—— no more than one strip on the gratingnder condition$28)
! Iy NN Wy Icoh and
<1l (46) V11— B?e(1—sirPd sinf¢)cosd cose _ “8
2 R =4,
since form, s>1 the omitted terms in the sum overands (1-B?s0— Bso cOSO)sin g

contribute slightly. ) . .
In the case of a diffraction grating in the form of a set of and hence we obtain the resul3) for a single strip.

rectangular-strip-shaped lugb-G ) the formulas(43) are Expressiond47) can easily be calculated in the limiting
relatively simple, and for radiation fields with, respectively, case of largep, 2p/l,>1 (the patrticle’s field covers-2p/l,
parallel and perpendicular polarizations we obtain inhomogeneities on the diffraction gratingnder conditions
(28) and
=Pl 71— _-r
(Eo) E‘”{ ! m:z_m Bl 1 I 7m V1—B%eo(1—sirfésirfe)cose cose _

(49

\/1 B?eq(1—sir?d sirf¢)cosé cose
(1— B%eo— Beg cosh)sin b

] (1— B2eo— B\egcosh)sin b

In this case the spectral densities of the radiation intensity are

I |a|—| 6| (1— B%e, cog ) cosh cose ~h ala
=1 1- S —sin— +4— sm2 . (50)
P J1-Bleg(1l-siPOsire)(1— BPeo— Begcosh)sing  leon Ix\lx 2l con
|lal -]\ h
|- IA( sir?
P! p 2l ¢on

with 0<27|a, dl|l,.
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V. TRANSITION RADIATION FROM AN ARBITRARILY whereJ,,(x) is a Bessel function of ordem,
PERIODIC SURFACE AT AN ARBITRARY ANGLE
OF INCIDENCE OF THE PARTICLE a w—Kkvy -1
R =i leon=| =k (56)
Let z=f(x,y) be a function periodic with respect to both coh Uz
variablesx andy with the periodsl, andl,, respectively. In the case of one-dimensional roughness. i.e
Then exgi[(0—Kwy/v)—kIf(xy)} is also a periodic func- 9 T
tion. Denoting byL ., the coefficients in the expansion of 2
this function in a double Fourier series f(x,y)—>f(x)=ac05<|—x , (57
X
[ o—kuy .
exa i U—_kz f(X,y) we Obta|n
z
" Lms_’Lm:ime(X)- (59)
= > Lpexpil(2amilx+(2as/l)yl}t,  (5D) If we superimpose on the regular surfaze f(x) with
m,s=—o

expansion coefficientk,, a surfacez, =a cost(27/1,)x with
a period an integer timeg smaller than the period of the

substituting the expansion into E(L1), and integrating, we function f(x), for the coefficients of the surfacet+z; we

obtain have the following expression:
, _e(Sz_Sl) eikRO o0
" 8r,e, Ro Ln= 2 (=D U0l ke (59
* 2 !
Lk [k, wv/c” = k'/eo]]tms , Finally, consider a saw-tooth-shaped surface
ms=—= [k'?—(w’/c?)eo][(@—Kv,) v, —ky)]
4x I
(52 a1+ |, —5=x<0
where z=f(x)= 4x | (60)
a 1——), O=x=:.
I 2
27
k;:kx__m: (53 . - . .
Ix For the expansion coefficients of this surface we obtain
: 2m im* 2y sin(mar/2+
K=k~ s - ST 0. (61)
y (mm/2)c—x

Comparison with the formulas for a planar boundary calcu- - For an analysis of transition radiation formulas let us con-
lated with use of perturbation theory shows thatgt=1,  sjder the case of a one-dimensional sinusoidal surBteA
m=s=0 we obtain these formulas. In fact, if the inhomoge-parameter characterizing the roughness of the interface is the
neity tends to the plane, i..(x,y)—0 orly,ly—, we see ratio of the sinusoid amplitude to the coherence lengtfor

from Eq.(51) thatL,,s—0 provided only one of the integers , —0 the formulas pass to the expressions for a plane inter-
m and s differs from zero, Whild_00—>1, i.e., we obtain the face f(X,y):O obtained by means of perturbation theory,
case of emission on the planar boundary. Thus, the problemnce in this case only the zeroth order Bessel function is
is reduced to determination of the coefficiettss in Eq.  different from zero and hence no summation takes place. For
(51), which describe the shape of the surface. In the case &fmall y only the first terms of the series have noticeable

one-dimensional roughness the calculations are simplifiegajues, since the Bessel function has an order of magnitude
significantly, as the double series in E§1) is reduced to a ™ for |arge y the first terms are small.

single series.
Let us give several examples of the expansion coefficients
L. For an interface sinusoidal in both directions,

From the expression foy,

_a 1
X7 X 8o cosy

f(x,y) 5(277 )+b 5(277 ) (54)
X,y)=acog —X cos —vVy|,
! 1—,8x\/s—0( sinf cosgp— Iim) —BZ\/s—Ocose

[y y %

we have the following expression far,.: 62)

__im+s
Lyns=Ii Jm

JS(Ii) ' (55) it follows that a deep corrugation for smaflgives the same

a
lcon coh radiation as a shallow one for large

026610-9
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For normal incidence of the electron on the targef ( tion takes the maximal value, i.e., no summation in formulas
=v,=0, v,=v) we have the following expression for the takes place.
argument of the Bessel function:

a 1
X=5 —(1—,8\/8—00050). 63) ACKNOWLEDGMENTS
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