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Investigation of transition radiation from a regular-roughness interface
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Institute for Physical Research of NASA, 378410 Ashtarak-2, Armenia

~Received 25 January 2001; published 23 July 2001!

Transition radiation at the interface between two media having regular inhomogeneities is considered in the
framework of perturbation theory, assuming that the dielectric constants of the two media differ insignificantly
from each other. The advantage of this approach is that no limitations exist on the characteristic size of the
inhomogeneities. The general case of a surface with two-dimensional roughness is considered. Attention is paid
to radiation characteristics that are general for periodic structures, independently of their particular features.
The physical picture of the radiation from a rough interface is determined by both longitudinal and transverse
effects. The case of normal incidence of an electron on a planar interface having either single or multiple
rectangular lugs~diffraction grating! is analyzed in detail. For the single lug infinite in one dimension, simple
expressions for transition radiation intensity are obtained, for both relativistic and nonrelativistic electrons.
They demonstrate that corrections to the plane-surface intensity become significant at small radiation angles. In
this case the radiation is also completely unpolarized, i.e., the spectral energy density of the perpendicular
component has the same order of magnitude as that of the parallel component. Consideration of these issues is
important since rough surfaces, as compared to planar surfaces, give a number of additional results that may be
used for the analysis of surface irregularities.

DOI: 10.1103/PhysRevE.64.026610 PACS number~s!: 41.20.2q, 34.50.Dy
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I. INTRODUCTION

The well known paper of Ginzburg and Frank@1# devoted
to transition radiation is limited to the consideration of
ideally planar interface between two media. In the pres
paper we consider radiation arising when a charged par
passes through a planar interface on which various inho
geneities are present.

It is known that a charged particle is not affected by m
dium inhomogeneities in longitudinal directions if the cohe
ence length exceeds the mean distance between the ato
the medium or individual inhomogeneities~see, e.g.,@2#!.
Inhomogeneities on a plane interface may be of vari
types, such as separate inhomogeneities isolated from
other, periodically located inhomogeneities, or statisti
ones. These problems have been treated theoreticall
@3,4#. The first experiments on transition radiation alrea
included information concerning the influence of the tre
ment of the interface on the polarization of the transiti
radiation ~see, e.g.,@5#!. Later, further experimental work
appeared devoted to this problem@6#.

In addition to the inhomogeneities indicated above, b
interfaces are also possible as well as ideally planar in
faces having an intermediate layer. If, however, the typi
parameters determining the interface curvature are s
compared to the corresponding typical distances playin
role in the formation of the radiation, corrections to formul
for an ideal interface are not essential@7,8#. Transition radia-
tion on an ideally planar interface having an intermedi
layer ~indistinct boundary!, considered for a number of spe
cial cases@9,10#, differs only slightly from the case of an
ideally distinct interface, if the longitudinal coherence leng
exceeds the size of the intermediate layer.
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To clarify the physical meaning of the stated problem
note that in transition radiation at an ideally planar interfa
the momentum transferred to the interface is always direc
perpendicularly to it during the emission process. If the
terface is the plane (x,y) and the particle moves along thez
axis at the velocityv, the momentumquu is transferred to the
interface along the direction of motion only. The momentu
transferred to the interface can easily be obtained from
laws of conservation of energy,

DE5\v, ~1!

and longitudinally transferred momentum.

S Dp

\
2kD uu

5quu, ~2!

where DE and Dp are the differences in the energy an
momentum of the emitting particle before and after emiss
of a photon with energy \v and wave vector k
5(v/c)A«0n (n being the unit vector in thek direction!.
Using the relation

DE5v•Dp, ~3!

we obtain, for small changes of the energy and momentu

quu5
v

v
~12bA«0 cosu!, ~4!

whereu is the angle between the directions of the emitt
photon and particle velocity, andb5v/c, where c is the
velocity of light.

In the presence of inhomogeneities on a planar interfac
typical lengthl appears that characterizes the medium in
mogeneity in the (x,y) plane. In this case the medium ca
take a momentum of the order of;\/ l in the transverse
©2001 The American Physical Society10-1
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R. A. BAGHIYAN PHYSICAL REVIEW E 64 026610
direction also. Thus, if we represent the field of the parti
as expanded in pseudophotons, whose momenta we de
by k(kx8 ,ky8 ,kz85v/v) the momentum conservation law ma
be rewritten as

kz82kz5quu, ~5!

k'8 2k''
1

l
. ~6!

The relation~5! is equivalent to Eq.~4! sincekz85v/v,
and the relation~6! should lead to a change of the Ginzbur
Frank formulas in just the same manner as, in light scat
ing, a relation similar to Eq.~6!, in which the pseudophoton
is replaced by the scattered photon, leads to deviations f
the Fresnel laws of reflection and refraction. The exten
which this change is significant depends on specific calc
tions.

As the exact solution of the problem seems to be v
complex, we will use perturbation theory to reveal the phy
cal picture.

II. STARTING EXPRESSION FOR THE INTENSITY
OF TRANSITION RADIATION FROM AN ARBITRARILY

SHAPED INTERFACE

Let us consider radiation arising when a charged part
traverses the interface between two media. Let the inter
be given by a functionz5 f (x,y). This function describes
small deviations of the real interface from the planez50
that would have been the interface between the two med
the case of ideal surfaces. These deviations are cause
surface roughness. Let us choose thex axis of the Cartesian
coordinate system in the plane containing the particle ve
ity v and thez axis. The velocityv is directed from the first
medium into the second and makes an anglec with the z
axis ~Fig. 1!.

For calculating the radiation we will use light scatterin
theory~see, e.g.,@11#! replacing the electromagnetic wave
it by the field of the moving particle, which we expand in
Fourier integral with respect to time, following the standa
procedure. In such a way the emission problem is reduce
that of the scattering of a set of monochromatic waves c
stituting the field of the moving particle~see@2# for more
detail!. It should then be assumed that the dielectric c

FIG. 1. Section of two-dimensional rough surface in the (x,z)
plane.
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stants of the two media differ from each other insignificant
A more rigorous criterion for the applicability of this ap
proach is given below. Thus, the calculation of transiti
radiation performed below with the use of perturbati
theory is applicable to only a limited set of interfaces b
tween two media with slightly different refractive indice
Such interfaces may be, for example, those between s
particles and the corresponding liquids these particles
immersed in. Although the output of transition radiation
proportional to the square of the difference in refractive
dices of the two media and hence is strongly suppresse
the case of slightly differing indices, the calculation tec
nique employed will allow one to look into the physical pi
ture of the phenomenon and to obtain general formulas v
for any of interfaces indicated above. Many of the qualitat
conclusions will obviously remain valid also for interface
between two media with sharply changing optical properti
Moreover, for an approximate quantitative evaluation of t
radiation in the case of abruptly changing properties of
media, one may make use of an interpolation formula ba
on replacing in the final expressions the factor correspond
to the emission from a planar boundary calculated pertur
tively by the exact formula for transition radiation from th
planar interface.

The radiation energy at large distancesR0 in the fre-
quency rangedv and into the solid angle intervaldV for an
arbitrarily shaped interface is determined by the usual
pression of classical electrodynamics with allowance for
dielectric constant of the medium:

dI~v,k!5cA«0uEv8 u2R0
2 dV dv, ~7!

where «05(«11«2)/2 is the mean value of the dielectri
constant of the two media. We denote byEv8 the radiation
field strength at the frequencyv at large distances from th
interface, it is determined from the macroscopic Maxwe
equations@2#,

Ev8 52
eikR0

4pR0
FkFk,E

2`

`

Ev~r !e2 ik•r«8~r !dVr G G, ~8!

whereEv(r ) is the Fourier component of the field of a un
formly moving particle at the pointr (x,y,z) in the medium
with mean dielectric constant«0 @2#,

Ev~r !5
ie

2p2vz
E

2`

` vv/c22k/«0

k22~v2/c2!«0

3eikx8x1 iky8y1 ikz8z dkx dky , ~9!

with e being the electron charge. The quantity«8(r ) is the
deviation of the dielectric constant from«0, e.g., in our case

«8~r !5H «12«05
«12«2

2
, 2`,z, f ~x,y!

«22«05
«22«1

2
, f ~x,y!,z,1`.

~10!
0-2
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INVESTIGATION OF TRANSITION RADIATION FROM . . . PHYSICAL REVIEW E64 026610
As the mean value of«8(r ) is equal to zero, the mean valu
of the scattered field vanishes as well. By integrating exp
sion ~8! over z and using Eq.~10! we obtain

Ev8 5
e~«22«1!

8p3vz«0

eikR0

R0

3FkFk,E
2`

` vv/c22k8/«0

quu@k822~v2/c2!«0#
eiq uu f (x,y)

3exp$ i ~kx82kx!x1 i ~ky82ky!y%dkx8 dky8 dx dyG G,
~11!

where

v5k8•v5kx8vx1kz8vz , ~12!

quu5kz82kz5
v2kx8vx

vz
2kz .

In what follows letvx50, vz5v . Whenz5 f (x,y)50, i.e.,
in the case of a planar interface, in the approximation
perturbation theory, we can perform the integration over
remaining variables and obtain a formula for the transit
radiation in the cases of one and two interfaces@3#. Compari-
son with the exact formulas for the transition radiation
lows us to find the condition of applicability of the perturb
tion theory method. It is easy to show that in addition to t
condition

U«22«1

«21«1
U!1 ~13!

a stricter condition should be satisfied, that is,

U«22«1

«21«1
U! l

l coh
cosu, ~14!

where 2pl is the wavelength of the emitted photon, andu is
the angle of the emission measured from thez axis; 0<u
<p. The coherence length

l coh5
1

quu
5

lbA«0

12bA«0 cosu
~15!

is defined here as the inverse of the momentum transfe
longitudinally to the interface in the emission of a photon
the directionu @Eq. ~4!#; this corresponds, in classical con
siderations, to that length of the trajectory of the emitti
particle that plays a role in the formation of transition rad
tion ~see, e.g.,@2#!.

For nonrelativistic particlesl coh;lbA«0 and the condi-
tion ~14! for uÞp/2 is actually always weaker than~13!,
while for relativistic particles the condition~14! can be no-
ticeably stronger than~13!.
02661
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III. RADIATION FROM AN IDEAL INTERFACE HAVING
AN ISOLATED RECTANGULAR-LUG-SHAPED

INHOMOGENEITY

As an example yielding to analytical solution let us co
sider emission of a charged particle on an interface given
the following expression~Fig. 2!:

z5 f ~x,y!5H h, ux2x0u<
a

2
, uy2y0u<

b

2

0, ux2x0u.
a

2
, uy2y0u.

b

2
,

~16!

where (x0 ,y0) is the distance between the trajectory of t
particle moving along thez axis and the center of the inho
mogeneity located in the planez50; h is the height whilea
andb are the widths of the roughness along thex andy axes,
respectively.

Simple integration of formula~11! with regard to Eq.~16!
leads to the following expression for the transition radiati
field at large distancesR0 with a particle moving along thez
axis:

Ev8 5Ev
pl1

e~«22«1!

2p3v«0

l coh

eikR0

R0
~eih/ l coh21!

3E
2`

` FkFk,
vv/c22k8/«0

k822 ~v2/c2! «0
G G

3
sin~Dkxa/2!

Dkx

sin~Dkyb/2!

Dky
eiDkxx01 iDkyy0 dkx8 dky8 ,

~17!

where

Dkx5kx82kx , ~18!

Dky5ky82ky

is the momentum transferred to the interface in the transv
direction. In Eq.~17! we singled out the field of the transitio
radiation from the plane interfaceEv

pl , i.e., for h50,

FIG. 2. Rectangular-lug-shaped inhomogeneity.
0-3
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Ev
pl5

e~«22«1!

2pc«0
b sinu

eikR0

R0

3
12b2«02bA«0 cosu

~12b2«0 cos2u!~12bA«0 cosu!
. ~19!

The polarization of the radiation is determined by t
double vector product under the integral sign in formu
~17!. If the particle moves along thez axis, two polarizations
are possible in our case in contrast to that of the planar
terface. In addition to parallel polarization (uu) with the elec-
tric vector lying in the radiation plane~containing the wave
vector of the emitted quantum,k, and the normal to the plan
z50), a perpendicular polarization (') appears with the
electric vector perpendicular to the radiation plane. This f
lows from the relation

FkFk,S vv

c2
2

k8

«0
D G G5nuu

k

«0
F ~kxkx81kyky8!

kz

kr

2kr

v

v
~12b2«0!G

1n'

k2

kr«0
~kxky82kykx8!, ~20!

kr
25kx

21ky
2 ,

wherenuu,n' are unit vectors in the radiation plane and in t
plane perpendicular to that, respectively. It is seen from
~20! that if kx85kx ,ky85ky we have (Ev8 )'50.

Expression~17! shows that the particle does not expe
ence the inhomogeneity of the interface at transversely tr
ferred momenta large compared to the inhomogeneity ‘‘m
mentum’’ \/a or \/b, if the conditions

UDkx

2
aU@1, UDky

2
bU@1, i.e., a@re f f , b@re f f ,

~21!

are satisfied, since the effectivekx8 and ky8 are determined
from the denominator of the integrand,k8x

21k8y
2

<(v2/v2)/(12b2«0)5re f f
21 . In this case the rapidly oscil

lating factors may be replaced byd functions
d(Dkx)d(Dky), resulting in the law of conservation of tran
versely transferred momentum in the emission processkx8
5kx , ky85ky . By integrating expression~17! over kx8,ky8 we
arrive at the formula~19! with an additional phase shif
exp(ih/ l coh). This corresponds to the laws of conservation
the transverse components of momenta in the reflection
refraction of light at a planar boundary. Both of these co
servation laws result from the fact that in the case of a p
fectly planar boundary the surface cannot accept any
mentum along the interface. However, if inhomogeneities
present on the interface between two media, the conserva
laws kx85kx , ky85ky may be violated. This will lead to a
difference of the formulas for transition radiation on a rou
interface from those on a planar one.
02661
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So, in the process of transition radiation the particle
affected by an inhomogeneity only at momentum transf
smaller than or of the order of\/a and \/b. At a50 and
b50 the inhomogeneity disappears and the effect of surf
inhomogeneity vanishes.

In just the same manner the particle does not experie
inhomogeneities when

h! l coh ~22!

for arbitrary values ofa and b. The last fact is well known
and related to the concept of the coherence length along
direction of the particle’s motion@2#.

The analysis of formula~17! will be performed in the
limit b→`, i.e., when the rectangular lug becomes a str
shaped inhomogeneity~Fig. 3!. In this case it is possible to
integrate expression~17! completely.

For spectral densities of the radiation energyI
5dI(v,k)/(dV dv), in the case of a rectangular strip
shaped lug (b→`), in the absence of Cherenkov-Vavilo
radiation (bA«0<1) we obtain the following expression
for, respectively, parallel and perpendicular polarizations:

I uu5I pl
uu H 11~va2vd!sin

h

l coh
1@2~sgna2sgnd!

12~12sgna sgnd!~11ma1md!

1~ma sgna2md sgnd!~21ma sgna2md sgnd!

1~va2vd!2#sin2
h

2l coh
J , ~23!

I'5I pl
uu A@e22uau/r1e22udu/r

22e2~ uau1udu!/r cos~akx!#sin2
h

2l coh
.

Here I pl
uu is the spectral density of radiation energy det

mined by expressions~7! and ~19!; a5x02a/2, d5x0
1a/2 are the distances of the particle trajectory from t
boundaries of the inhomogeneity;w is the azimuthal angle o
the emitted photon measured from thex axis, 0<w<2p;

FIG. 3. Section of strip in the (x,z) plane.
0-4
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INVESTIGATION OF TRANSITION RADIATION FROM . . . PHYSICAL REVIEW E64 026610
ma,d5@F sin~ ua,dukx!2cos~ ua,dukx!#e
2ua,du/r;

va,d5@F cos~ ua,dukx!1sin~ ua,dukx!#e
2ua,du/r;

F5
r

lbA«0

~12b2«0!~cosu1bA«0 sin2u!cosw

~12b2«02bA«0 cosu!sinu
;

~24!

A5
r2

l2b2«0

~12b2«0 cos2u!2 sin2w

~12b2«02bA«0 cosu!2 sin2u
;

r5
lbA«0

A12b2«0~12sin2u sin2w!
; kx5

sinu cosw

l
.

Consider some special cases of expressions~23!. For h
! l coh and arbitrarya additions to the transition radiatio
from a planar interface are proportional toh/ l coh in the case
of parallel polarization, and to (h/ l coh)

2 in the case of per-
pendicular polarization; forh→0 we haveI uu→I pl

uu , I'→0.
Expressions~23! pass to the formulas for a planar inte

face ata50 or at a→`, i.e., in the absence of inhomoge
neities. The intensity of the radiation depends on the rela
signs ofa andd. When the particle moves outside the inh
mogeneity, sgna and sgnd are the same, while when mov
ing inside sgna and sgnd are different.

When the conditions

uau@r, udu@r, ~25!

are simultaneously satisfied, formulas~23! and ~24! show
that the corrections to radiation at a planar interface are
ponentially small. This result may be explained by the ‘‘lim
ited nature’’ of the transverse sizes of the field of the mov
particle. If we expand the electric field of a rapidly movin
particle in a Fourier integral with respect to time, the spec
density of the particle’s field will turn out to range up to th
frequencyv only for impact parameters~distance from the
point at which the particle’s field is being considered to t
trajectory in the direction perpendicular to the particle’s m
tion! shorter thanre f f ,

r<re f f5
lbA«0

A12b2«0

. ~26!

At larger impact parameters the particle’s field spectrum d
not contain photons at frequencies exceedingv ~see, e.g.,
@2#!. In the case under study the distances from the partic
trajectory to both edges of the rectangular strip considera
exceed the lateral sizes of the field, sincer<re f f . Due to
this fact the corrections to the transition radiation at a p
fectly planar boundary are exponentially small.

In the other limiting case where conditions opposite
those in Eq.~25!,

uau!r, udu!r, ~27!
02661
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are satisfied, i.e., when the transverse field of the particl
actually uniform on the whole strip, the corrections to rad
tion at a planar boundary may readily be obtained from
formula ~23! above after expanding in the parametersuau/r
and udu/r.

Owing to the fact that the relation

bA«0 sinu cosw

A12b2«0~12sin2u sin2w!
<1 ~28!

is almost always valid, from the inequality~27! it follows
that

ua,du
l

sinu cosw!1. ~29!

Making use of Eq.~29!, under conditions~27!, we obtain
from Eq. ~23!

I uu5I pl
uu F12

uau2udu
r

3S F2
bA«0 sinu cosw

A12b2«0~12sin2u sin2w!
D sin

h

l coh

22
a

r S 11F
bA«0 sinu cosw

A12b2«0~12sin2u sin2w!
D sin2

h

2l coh
G ,

~30!

I'5I pl
uu AF S uau2udu

r D 2

1
a2

r2

b2«0 sin2u cos2w

A12b2«0~12sin2u sin2w!
Gsin2

h

2l coh
.

Since the corrections should vanish fora→0, destructive
interference takes place from different edges of the strip.
nonrelativistic particles (bA«0!1, r;re f f; l coh;lbA«0)
the expressions forF andA have the forms

F'cotu cosw, A'
sin2w

sin2u
. ~31!

For relativistic particles (bA«0;1, u!1) we have

F'
A12b2«0 cosw

uA11u2 sin2w/~12b2«0!
,

A'
~12b2«0!@11u2/~12b2«0!#2 sin2w

u2@11u2 sin2w/~12b2«0!#
.

~32!

In both cases maximal deviations from the formulas
plane-interface transition radiation are observed for sm
angles of radiation:u!1 if bA«0!1 andu!A12b2«0 if
bA«0;1.
0-5
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Significant changes in the formulas for transition radiat
at a planar boundary will be observed if one of the conditio
~27! is satisfied, while instead of the other one the oppo
condition holds:

au!r, udu@r, ~33!

i.e., if the particle is affected by only the nearest edgea. In
this case interference of radiation from the different edge
the strip does not occur and one may expect significant
fects. For spectral densities of the radiation energy we ob

I uu5I pl
uu H 11FF cosS uau

l
sinu cosw D

1sinS uau
l

sinu cosw D Gsin
h

l coh

1F11F212XF sinS uau
l

sinu cosw D
2cosS uau

l
sinu cosw D CGsin2

h

2l coh
J , ~34!

I'5I pl
uu A sin2

h

2l coh
.

For nonrelativistic particles formulas~34! simplify to

I uu5I pl
uu F11cotu cosw sin

h

l coh

1~cot2u cos2w21!sin2
h

2l coh
G , ~35!

I'5I pl
uu sin2w

sin2u
sin2

h

2l coh
.

In this case the spectral densities of the radiation energy
parallel and perpendicular polarizations foru!1 become of
the same order, i.e., total depolarization of radiation ta
place. The absolute values of the intensities in both polar
tions for u!1 can exceed the intensity from the plane int
face. After integration over the angles of emission of a p
ton u,w, the overall intensityI uu1I' becomes equal to th
radiation intensity from the planar interface. Hence, the pr
ence of a strip-shaped inhomogeneity results in an ang
redistribution of the intensity of plane-interface transition
diation and in its depolarization.

For relativistic particles, under the condition~28!, we
have

I uu5I pl
uu F11Fsin

h

l coh
1~F221!sin2

h

2l coh
G , ~36!

I'5I pl
uu A sin2

h

2l coh
,
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where l coh;l/2 for backward emission andl coh ;l/(1
2b2«0) for forward emission. Foru!A12b2«0 we obtain
from Eqs.~32!

F'2
cosw

u
A12b2«0, ~37!

A'
sin2 w

u2
~12b2«0!.

Hence, in the relativistic case also there is, foru
!A12b2«0, a considerable deviation of the intensity fro
that in the plane-interface case. But at anglesA12b2«0!u
!1 these deviations are significantly smaller.

It follows from the analysis performed that the correctio
are significant at small angles of emission where total de
larization occurs. The maximal effect is achieved when
sizes of the inhomogeneity in the (x,y) plane are of the orde
of or larger than the transverse sizes of the field of a part
that moves near one of the inhomogeneity~step! edges.

IV. TRANSITION RADIATION
FROM DIFFRACTION GRATING

Let us consider an interface in the form of a set of pe
odically placed lugs having widthsa and b and separated
from each other by distancesd andg along thex andy axes,
respectively~diffraction grating, Fig. 4!:

z5 f ~x,y!5H h; ux2xmu<
a

2
, uy2ysu<

b

2

0; ux2xmu.
a

2
, uy2ysu.

b

2
,

~38!

wherexm andys are the distances from the particle trajecto
to the center of the inhomogeneity with indicesm ands,

FIG. 4. Section of two-dimensional grating in the (x,z) plane.
0-6
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INVESTIGATION OF TRANSITION RADIATION FROM . . . PHYSICAL REVIEW E64 026610
xm5x01mlx , ys5y01sly , ~39!

m,s50,61,62, . . . .

with l x5a1d, l y5b1g being the periods along thex andy
axes, respectively. Substituting Eq.~38! into Eq. ~11! and
taking into account that

E
2`

`

•••dx•••E
2`

`

. . . dy

5 (
m,s52`

` E
xm2a/2

xm1a/2

. . . dxE
ys2b/2

ys1b/2

•••dy, ~40!

we obtain for the radiation field in the case of a finite grati
(2N<m, s<N) with (2N11)2 lugs the following expres-
sion:

Ev8 5Ev
pl1E

2`

`

J~kx ,ky8!
sin@~2N11!Dkxl x/2#

sin~Dkxl x/2!

3
sin@~2N11!Dkyl y/2#

sin~Dkyl y/2!
dkx8 dky8 ,

J~kx8 ,ky8!5
e~«22«1!

2p3v«0

l coh

eikR0

R0
~eih/ l coh21!

3FkFk,
vv/c22k8/«0

k822~v2/c2!«0
G G

3
sin~Dkxa/2!

Dkx

sin~Dkyb/2!

Dky
eiDkxx01 iDkyy0.

~41!

The structure of the expression~41! yields to an obvious
interpretation. ForN50 we obtain expression~17! for the
case of a single two-dimensional lug. ForNÞ0 expression
~41! differs from the single-lug case byN -containing factors.

For N sufficiently large,N@1, the rapidly oscillating fac-
tor may be replaced by a sum ofd functions according to the
formula
where

02661
lim
N→`

sin 2Nx

sinx
5p (

n52`

`

d~x2np!, ~42!

wheren are integers and zero. The substitution~42! may be
performed in cases where the remaining part of the integr
J(kx8 ,ky8) does not vary significantly over the width o
the maxima of the function sin 2Nx/sinx. By integrating we
obtain

Ev8 5Ev
pl2

e~«22«1!

8p3v«0

l coh~eih/ l coh21!
eikR0

R0

3 (
m,s52`

` FkFk,
vv

c2
2

k8

«0
G G

S k822
v2

c2
«0D ms

3~ei (2pm/ l x)(x01a/2)2ei (2pm/ l x)(x02a/2)!~ei (2ps/ l y)(y01b/2)

2ei (2ps/ l y)(y02b/2)!, ~43!

where

kx85kx1
2p

l x
m, ~44!

ky85ky1
2p

l y
s,

determines the law of conservation of momentum transfer
to the grating in the direction perpendicular to the directi
of motion.

Since in a real experiment we deal always with a be
of charged particles, it pays to write down expressio
for radiation intensities averaged over the impact pa
meters2 l x/2<x0< l x/2, 2 l y/2<y0< l y/2. For the spectral
densities of the radiation energy averaged in this manner
obtain
Ī uu5I pl
uu X124S sin2

h

2l coh
D H ab

l xl y
2 (

m,s52`

`

Bms
2 F12

A12b2«0 cotu

12b2«02bA«0 cosu
S 2re f f

l x
pm cosw1

2re f f

l y
ps sinw D G 2J C,

Ī'5I pl
uu 4S sin2

h

2l coh
D (

m,s52`

`

Bms
2 ~12b2«0!@~2re f f / l y!ps cosw2~2re f f / l x!pm sinw#2

~12b2«02bA«0 cosu!2 sin2u
, ~45!
0-7
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Bms5
12b2«0 cos2u

12b2«0

sin~pma/ l x!

pm

sin~psb/ l y!

ps

3F11S 2re f f

l x
D 2S pm1

bA«0 sinu cosw

A12b2«0

l x

2re f f
D 2

1S 2re f f

l y
D 2S ps1

bA«0 sinu sinw

A12b2«0

l y

2re f f
D 2G21

.

If the relative variation per step (m→m11, s→s11)
of the functions to be summed is small, which is the ca
under the condition 2re f f / l x ,l y!1, we can replace the
sum by an integral making use of Eqs.~44!. In this case
the field of a particle covers no more than one lug, a
we should naturally arrive at formulas for the intensity
radiation on a planar boundary with a single lug. In fact,
we use formula~7! for the fields~17!, then, after averaging
over a beam having sizesl x and l y along the corresponding
directions, we obtain Eqs.~45! where instead of sums ther
are integrals overkx8,ky8 with integration limits from2`
to 1`.

If, however, the particle’s field covers many lugs on t
diffraction grating (2re f f / l x ,l y@1) we obtain

Ī uu'I pl
uu F124

ab

l xl y
S 12

ab

l xl y
D sin2

h

2l coh
G ,

Ī'! Ī uu, ~46!

since form, s@1 the omitted terms in the sum overm ands
contribute slightly.

In the case of a diffraction grating in the form of a set
rectangular-strip-shaped lugs (b→`) the formulas~43! are
relatively simple, and for radiation fields with, respective
parallel and perpendicular polarizations we obtain

~Ev8 ! uu5Ev
plH 12 (

m52`

`

BmF12
2r

l x
pm

3
A12b2«0~12sin2u sin2w!cosu cosw

~12b2«02bA«0 cosu!sinu
G J ,
with 0<2pua,d l u l x.

02661
e

d

f

,

~Ev8 !'5Ev
pl (

m52`

`

Bm

2r

l x
pm

3
A12b2«0~12sin2u sin2w!sinw

~12b2«02bA«0 cosu!sinu
, ~47!

Bm52
~12b2«0 cos2u!~eih/ l coh21!

12b2«0~12sin2u sin2w!

3ei (2pm/ l x)x0
sin~pma/ l x!

pm

3F11S 2r

l x
D 2

3S pm1
bA«0 sinu cosw

A12b2«0~12sin2u sin2w!

l x

2r D 2G21

.

If on changing each of the integersm by unity the sum
varies by a negligibly small value, we can considerm
as a continuous variable and hence replace the sum b
integral with use of the relation~44!. This can be done in the
limiting case of smallr, 2r/ l x!1 ~the particle’s field covers
no more than one strip on the grating!, under conditions~28!
and

A12b2«0~12sin2u sin2w!cosu cosw

~12b2«02bA«0 cosu!sinu
<1, ~48!

and hence we obtain the results~23! for a single strip.
Expressions~47! can easily be calculated in the limitin

case of larger, 2r/ l x@1 ~the particle’s field covers;2r/ l x
inhomogeneities on the diffraction grating! under conditions
~28! and

A12b2«0~12sin2u sin2w!cosu cosw

~12b2«02bA«0 cosu!sinu
>1. ~49!

In this case the spectral densities of the radiation intensity
I uu5I pl
uu F12

uau2udu
r

~12b2«0 cos2u!cosu cosw

A12b2«0~12sin2u sin2w!~12b2«02bA«0 cosu!sinu
sin

h

l coh
14

a

l x
S a

l x
21D sin2

h

2l coh
G , ~50!

I'5I pl
uu AS uau2udu

r D 2

sin2
h

2l coh
0-8
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V. TRANSITION RADIATION FROM AN ARBITRARILY
PERIODIC SURFACE AT AN ARBITRARY ANGLE

OF INCIDENCE OF THE PARTICLE

Let z5 f (x,y) be a function periodic with respect to bo
variablesx and y with the periodsl x and l y , respectively.
Then exp$i@(v2kx8vx /vz)2kz#f(x,y)% is also a periodic func-
tion. Denoting byLms the coefficients in the expansion o
this function in a double Fourier series

expF i S v2kx8vx

vz
2kzD f ~x,y!G

5 (
m,s52`

`

Lmsexp$ i @~2pm/ l x!x1~2ps/ l y!y#%, ~51!

substituting the expansion into Eq.~11!, and integrating, we
obtain

Ev8 5
e~«22«1!

8p3vz«0

eikR0

R0

3 (
m,s52`

`
†k @k, vv/c2 2 k8/«0#‡Lms

@k822~v2/c2!«0#@~v2kx8vx! /vz 2kz!]
,

~52!

where

kx85kx2
2p

l x
m, ~53!

ky85ky2
2p

l y
s.

Comparison with the formulas for a planar boundary cal
lated with use of perturbation theory shows that atLms51,
m5s50 we obtain these formulas. In fact, if the inhomog
neity tends to the plane, i.e.,f (x,y)→0 or l x ,l y→`, we see
from Eq.~51! thatLms→0 provided only one of the integer
m ands differs from zero, whileL00→1, i.e., we obtain the
case of emission on the planar boundary. Thus, the prob
is reduced to determination of the coefficientsLms in Eq.
~51!, which describe the shape of the surface. In the cas
one-dimensional roughness the calculations are simpli
significantly, as the double series in Eq.~51! is reduced to a
single series.

Let us give several examples of the expansion coefficie
Lms. For an interface sinusoidal in both directions,

f ~x,y!5a cosS 2p

l x
xD1b cosS 2p

l y
yD , ~54!

we have the following expression forLms:

Lms5 i m1sJmS a

l coh
D JsS b

l coh
D , ~55!
02661
-

-

m

of
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ts

whereJm(x) is a Bessel function of orderm,

x5
a

l coh
, l coh5S v2kx8vx

vz
2kzD 21

. ~56!

In the case of one-dimensional roughness, i.e.,

f ~x,y!→ f ~x!5a cosS 2p

l x
xD , ~57!

we obtain

Lms→Lm5 i mJm~x!. ~58!

If we superimpose on the regular surfacez5 f (x) with
expansion coefficientsLm a surfacez15a cosj(2p/lx)x with
a period an integer timesj smaller than the period of the
function f (x), for the coefficients of the surfacez1z1 we
have the following expression:

Lm8 5 (
k52`

`

~21!kJk~x!Lm2kj . ~59!

Finally, consider a saw-tooth-shaped surface

z5 f ~x!5H aS 11
4x

l D , 2
l

2
<x<0

aS 12
4x

l D , 0<x<
l

2
.

~60!

For the expansion coefficients of this surface we obtain

Lm8 5
i m12x sin~mp/21x!

~mp/2!22x2
. ~61!

For an analysis of transition radiation formulas let us co
sider the case of a one-dimensional sinusoidal surface~57!. A
parameter characterizing the roughness of the interface is
ratio of the sinusoid amplitude to the coherence lengthx. For
x50 the formulas pass to the expressions for a plane in
face f (x,y)50 obtained by means of perturbation theo
since in this case only the zeroth order Bessel function
different from zero and hence no summation takes place.
small x only the first terms of the series have noticeab
values, since the Bessel function has an order of magnit
xm; for largex the first terms are small.

From the expression forx,

x5
a

l

1

bA«0 cosc

3F12bxA«0S sinu cosw2
l

l x
mD2bzA«0 cosuG ,

~62!

it follows that a deep corrugation for smallc gives the same
radiation as a shallow one for largec.
0-9
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For normal incidence of the electron on the target (vx
5vy50, vz5v) we have the following expression for th
argument of the Bessel function:

x5
a

l

1

bA«0

~12bA«0 cosu!. ~63!

This expression shows that if the condition for Vavilo
Cherenkov radiation is satisfied the zeroth order Bessel fu
s

k

02661
c-

tion takes the maximal value, i.e., no summation in formu
takes place.
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